Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Transl Med ; 14(654): eabo2652, 2022 07 20.
Article in English | MEDLINE | ID: covidwho-1949955

ABSTRACT

Hyperinflammation triggered by SARS-CoV-2 is a major cause of disease severity, with activated macrophages implicated in this response. OP-101, a hydroxyl-polyamidoamine dendrimer-N-acetylcysteine conjugate that specifically targets activated macrophages, improves outcomes in preclinical models of systemic inflammation and neuroinflammation. In this multicenter, randomized, double-blind, placebo-controlled, adaptive phase 2a trial, we evaluated safety and preliminary efficacy of OP-101 in patients with severe COVID-19. Twenty-four patients classified as having severe COVID-19 with a baseline World Health Organization seven-point ordinal scale of ≥5 were randomized to receive a single intravenous dose of placebo (n = 7 patients) or OP-101 at 2 (n = 6), 4 (n = 6), or 8 mg/kg (n = 5 patients). All study participants received standard of care, including corticosteroids. OP-101 at 4 mg/kg was better than placebo at decreasing inflammatory markers; OP-101 at 4 and 8 mg/kg was better than placebo at reducing neurological injury markers, (neurofilament light chain and glial fibrillary acidic protein). Risk for the composite outcome of mechanical ventilation or death at 30 and 60 days after treatment was 71% (95% CI: 29%, 96%) for placebo and 18% (95% CI: 4%, 43%; P = 0.021) for the pooled OP-101 treatment arms. At 60 days, 3 of 7 patients given placebo and 14 of 17 OP-101-treated patients were surviving. No drug-related adverse events were reported. These data show that OP-101 was well tolerated and may have potential to treat systemic inflammation and neuronal injury, reducing morbidity and mortality in hospitalized patients with severe COVID-19.


Subject(s)
COVID-19 Drug Treatment , Dendrimers , Dendrimers/therapeutic use , Double-Blind Method , Humans , Inflammation/drug therapy , Respiration, Artificial , SARS-CoV-2 , Treatment Outcome
2.
J Control Release ; 335: 527-540, 2021 07 10.
Article in English | MEDLINE | ID: covidwho-1246017

ABSTRACT

Inflammation and neovascularization are key pathological events in human age-related macular degeneration (AMD). Activated microglia/macrophages (mi/ma) and retinal pigmented epithelium (RPE) play an active role in every stage of disease progression. Systemic therapies that can target these cells and address both inflammation and neovascularization will broaden the impact of existing therapies and potentially open new avenues for early AMD where there are no viable therapies. Utilizing a clinically relevant rat model of AMD that mirrors many aspects that of human AMD pathological events, we show that systemic hydroxyl-terminated polyamidoamine dendrimer-triamcinolone acetonide conjugate (D-TA) is selectively taken up by the injured mi/ma and RPE (without the need for targeting ligands). D-TA suppresses choroidal neovascularization significantly (by >80%, >50-fold better than free drug), attenuates inflammation in the choroid and retina, by limiting macrophage infiltration in the pathological area, significantly suppressing pro-inflammatory cytokines and pro-angiogenic factors, with minimal side effects to healthy ocular tissue and other organs. In ex vivo studies on human postmortem diabetic eyes, the dendrimer is also taken up into choroidal macrophages. These results suggest that the systemic hydroxyl dendrimer-drugs can offer new avenues for therapies in treating early/dry AMD and late/neovascular AMD alone, or in combination with current anti-VEGF therapies. This hydroxyl dendrimer platform but conjugated to a different drug is undergoing clinical trials for severe COVID-19, potentially paving the way for faster clinical translation of similar compounds for ocular and retinal disorders.


Subject(s)
COVID-19 , Dendrimers , Wet Macular Degeneration , Angiogenesis Inhibitors , Animals , Choroid , Humans , Inflammation/drug therapy , Rats , SARS-CoV-2 , Vascular Endothelial Growth Factor A , Visual Acuity
SELECTION OF CITATIONS
SEARCH DETAIL